If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2=25000
We move all terms to the left:
a^2-(25000)=0
a = 1; b = 0; c = -25000;
Δ = b2-4ac
Δ = 02-4·1·(-25000)
Δ = 100000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{100000}=\sqrt{10000*10}=\sqrt{10000}*\sqrt{10}=100\sqrt{10}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-100\sqrt{10}}{2*1}=\frac{0-100\sqrt{10}}{2} =-\frac{100\sqrt{10}}{2} =-50\sqrt{10} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+100\sqrt{10}}{2*1}=\frac{0+100\sqrt{10}}{2} =\frac{100\sqrt{10}}{2} =50\sqrt{10} $
| 12=23-4x | | 4/x=22/187 | | 10000=x^2 | | 10.000=x^2 | | 2(1.5+n)=4.5 | | -9.5(2x-10)=3.8(-5x | | 125-100m+33.600=35.175+150m | | 2e=8-6 | | -8x(-0.09)=x(-0.5) | | 9x/4=-18 | | -4(x-3)=3(x-2) | | 1/3(6x+9)=2x+3 | | 2p-13=5p-(1p-7 | | Y=25x-1000 | | C(x)=35x-10 | | 3/4f-(-3)=15 | | 5r+94=6r-5 | | 6x-1+67=180 | | (3x-1)(2x+7)-(x+1)(6x-5)=7 | | 6/13x=18/17 | | 7.5=5+x/100+10x | | (9/4x+6)=-(5/4x-24 | | 4/9x^2=-16/81 | | 2(4x+-12)+1=9 | | 3.0908x^2+17.685x+1.2414=89 | | 2.5x+1+-7x=-44 | | 5.6g+8=2.6g=20 | | 1-n2n=1-2n-n | | C-8x2=-20 | | 4n-40+7(-2n=2) | | 180n-360=1800n | | 170x-1.000=30(5x-30) |